1,342 research outputs found

    Mark 3 VLBI system: Tropospheric calibration subsystems

    Get PDF
    Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level

    Atmospheric limitations to clock synchronization at microwave frequencies

    Get PDF
    Clock synchronization schemes utilizing microwave signals that pass through the Earth's atmosphere are ultimately limited by our ability to correct for the variable delay imposed by the atmosphere. The atmosphere is non-dispersive at microwave frequencies and imposes a delay of roughly 8 nanosec times the cosecant of the elevation angle. This delay is composed of two parts, the delay due to water vapor molecules (i.e., the wet delay), and the delay due to all other atmospheric constituents (i.e., the dry delay). Water vapor contributes approximately 5 to 10% of the total atmospheric delay but is highly variable, not well mixed, and difficult to estimate from surface air measurements. However, the techniques of passive remote sensing using microwave radiometry can be used to estimate the line of sight delay due to water vapor with potential accuracies of 10 to 20 picosec. The devices that are used are called water vapor radiometers and simply measure the power emitted by the water vapor molecule at the 22.2 GHz spectral line. An additional power measurement is usually included at 31.4 GHz in order to compensate for the effect of liquid water (e.g., clouds). The dry atmosphere is generally in something close to hydrostatic equilibrium and its delay contribution at zenith can be estimated quite well from a simple barometric measurement. At low elevation angles one must compensate for refractive bending and possible variations in the vertical refractivity profile. With care these effects can be estimated with accuracies on the order of 30 picosec down to elevation angles of 10 degree

    Tropospheric monitoring technology for gravity wave experiments

    Get PDF
    Tropospheric refractivity fluctuations are an important error source for gravity wave detection by Doppler tracking in that they alter the phase and phase rate of electromagnetic signals. Estimates are presented of the effect of tropospheric fluctuations on the Doppler signal and some examples are suggested of methods which minimize the effect. A model of the fluctuations is utilized to achieve those goals. Four possible methods for reducing the fluctuation effect are suggested: (1) observation and analysis strategies, which separate the atmospheric and gravity wave signatures; (2) water vapor radiometry for the wet component; (3) calibration using Global Positioning System (GPS) satellites; and (4) Doppler observations from multiple antennas to average fluctuation effects. The last two techniques could be used to calibrate both wet and dry fluctuations, or could be used in conjunction with water vapor radiometry to calibrate only the dry component

    Microwave radiometry as a tool to calibrate tropospheric water-vapor delay

    Get PDF
    Microwave radiometers were used to measure the emission line due to the water vapor molecules of atmospheric emission. Four separate field tests were completed which compared radiometers to other techniques which measure water vapor. It is shown that water vapor induced delay can be estimated with an accuracy of plus or minus 2 cm for elevation angles above 17 degrees

    Extracting joint weak values with local, single-particle measurements

    Full text link
    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure weakly in practice (for instance, in optics -- a common testing ground for this technique -- strong photon-photon interactions would be needed). Here we derive a general, experimentally feasible, method for extracting these values from correlations between single-particle observables.Comment: 6 page

    A catalog of radio observations of Jupiter 1961-1964

    Get PDF
    Catalog of radio observations of Jupiter 1961 to 196

    X-band system performance of the very large array

    Get PDF
    The Very Large Array (VLA) is being equipped to receive telemetry from Voyager 2 during the Neptune encounter in 1989. Cryogenically cooled amplifiers are being installed on each of the 27 antennas. These amplifiers are currently a mix of field effect transistors (FETs) and high electron mobility transistors (HEMTs) and exhibit zenith system temperatures that range from 30 to 52 K. The system temperatures and aperture efficiencies determined during the past year are summarized. The nominal values of the noise diode calibration are compared with derived values made under the assumption of a uniform atmosphere over the array. Gain values are determined from observations of unresolved radio sources whose flux densities are well known. The tests suggest that the completed VLA will have a ratio of gain to system temperature that is approximately 4.4 dB above that of a single 64 m antenna of the Deep Space Network

    Comment on "A linear optics implementation of weak values in Hardy's paradox"

    Full text link
    A recent experimental proposal by Ahnert and Payne [S.E. Ahnert and M.C. Payne, Phys. Rev. A 70, 042102 (2004)] outlines a method to measure the weak value predictions of Aharonov in Hardy's paradox. This proposal contains flaws such as the state preparation method and the procedure for carrying out the requisite weak measurements. We identify previously published solutions to some of the flaws.Comment: To be published in Physical Review

    Water vapor radiometry research and development phase

    Get PDF
    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies

    18. The Microvascular Decompression in Trigeminal Neuralgia

    Get PDF
    • …
    corecore